Specification Sheet: Alloy 825 (UNS N08825) W.Nr. 2.4858

An Austenitic Nickel-Iron-Chromium Alloy Developed for Exceptional **Corrosion Resistance In Both Oxidizing and Reducing Environments**

Alloy 825 (UNS N08825) is an austenitic nickel-iron-chromium alloy with additions of molybdenum, copper and titanium. It was developed to provide exceptional resistance to numerous corrosive environments, both oxidizing and reducing.

The nickel content of Alloy 825 makes it resistant to chloride stresscorrosion cracking, and combined with molybdenum and copper, provides substantially improved corrosion resistance in reducing environments when compared to conventional austenitic stainless steels. The chromium and molvbdenum content of Allov 825 provides resistance to chloride pitting, as well as resistance to a variety of oxidizing atmospheres. The addition of titanium stabilizes the alloy against sensitization in the as-welded condition. This stabilization makes Alloy 825 resistant to intergranular attack after exposure in the temperature range which would typically sensitize un-stabilized stainless steels.

Alloy 825 is resistant to corrosion in a wide variety of process environments including sulfuric, sulfurous, phosphoric, nitric, hydrofluoric and organic acids and alkalis such as sodium or potassium hydroxide, and acidic chloride solutions.

The fabrication of Alloy 825 is typical of nickel-base alloys, with material readily formable and weldable by a variety of techniques.

Standards

ASTM......B 424 ASME......SB 424

Applications

- Air Pollution Control Scrubbers
- Chemical Processing Equipment Acids Alkalis
- Food Process Equipment
- Nuclear
 - **Fuel Reprocessing Fuel Element Dissolvers** Waste Handling
- Offshore Oil and Gas Production Seawater Heat Exchangers **Piping Systems** Sour Gas Components
- Chemical Analysis

- Ore Processing
- Copper Refining Equipment Petroleum Refining
- Air-cooled Heat Exchangers
- Steel Pickling Equipment Heating Coils Tanks Crates Baskets
- Waste Disposal Injection Well Piping Systems

Typical analysis (Weight %)							
Ni		Fe		Cr		Мо	
38.0 min. – 46.0 max	K. 2	22.0 min.		19.5 min. – 23.5 max.		2.5 min. – 3.5 max.	
Cu	Ti	С	Mn	S	Si	AI	
1.5 min. – 3.0 max.	0.6 min. – 1.2 max.	0.05 max.	1.00 max.	0.03 max.	0.5 max.	0.2 max.	

Specific Heat

Melting Range

0.105 BTU/lb - °F

440 Joules/kg°K

Electrical Resistivity

1.13 µ cm (26°C)

2500 – 2550°F

1370 - 1400°C

Modulus of Elasticity

196 MPa (38°C)

28.3 psi x 10.6 (100°F)

678 Ohm circ mil/ft (78°F)

Physical Properties

Densitv

0.294 lb/in3 8.14 g/cm³

Magnetic Permeability

1.005 Oersted (µ at 200H)

Thermal Conductivity

76.8 Btµ-ft/hr-ft² - ^oF (78°F) 11.1 W/m-k (26°C)

Linear Coefficient

of Thermal Expansion 7.8 x 10⁻⁶ in / in°F (200°F) 4 m / m°C (93°F)

Mechanical Properties

Typical Room Temperature Mechanical Properties, Mill Annealed

	Properties Applicable to Plate				
0.2% 0 Yield Si psi	Offset trength (MPa)		mate Strength (MPa)	Elongation percent in 2" (50mm)	Hardness Rockwell B
49,000	(338)	96,000	(662)	45	135 - 165

SANDMEYER STEEL COMPANY ONE SANDMEYER LANE . PHILADELPHIA, PA 19116-3598 800-523-3663 • +1-215-464-7100 • FAX +1-215-677-1430

www.SandmeyerSteel.com

Providing Solutions, With Materials and Value Added Products, for Process Industries

Mechanical Properties

Alloy 825 has good mechanical properties from cryogenic to moderately high temperatures. Exposure to temperatures above 1000°F (540°C) can result in changes to the microstructure that will significantly lower ductility and impact strength. For that reason, Alloy 825 should not be utilized at temperatures where creep-rupture properties are design factors. The alloy can be strengthened substantially by cold work. Alloy 825 has good impact strength at room temperature, and retains it's strength at cryogenic temperatures.

Table 6 - Charpy Keyhole Impact Strength of Plate				
Temperature		Orientation	Impact Strength	
°F	°C		ft-lb	J
Room	Room	Longitudinal	79.0	107
		Transverse	83.0	113
-110	-43	Longitudinal	78.0	106
		Transverse	78.5	106
-320	-196	Longitudinal	67.0	91
		Transverse	71.5	97
-423	-253	Longitudinal	68.0	92
		Transverse	68.0	92

* Average of three tests.

Corrosion Resistance

The most outstanding attribute of Alloy 825 is its excellent corrosion resistance. In both oxidizing and reducing environments, the alloy resists general corrosion, pitting, crevice corrosion, intergranular corrosion and chloride stress-corrosion cracking.

Resistance to Laboratory Sulfuric Acid Solutions

Alloy	Corrosion Rate in Boiling Laboratory Sulfuric Acid Solution Mils/Year (mm/a)			
	10%	40%	50%	
316	636 (16.2)	>1000 (>25)	>1000 (>25)	
825	20 (0.5)	11 (0.28)	20 (0.5)	
625	20 (0.5)	Not Tested	17 (0.4)	

Stress-Corrosion Cracking Resistance

The high nickel content of Alloy 825 provides superb resistance to chloride stress-corrosion cracking. However, in the extremely severe boiling magnesium chloride test, the alloy will crack after long exposure in a percentage of samples. Alloy 825 performs much better in less severe laboratory tests. The following table summaries the alloys performance.

Resistance to Chloride Stress Corrosion Cracking

Test (U-Bend	Alloy				
Samples)	316	SSC-6MO	825	625	
42% Magnesium Chloride (Boiling)	Fail	Mixed	Mixed	Resist	
33% Lithium Chloride (Boiling)	Fail	Resist	Resist	Resist	
26% Sodium Chloride (Boiling)	Fail	Resist	Resist	Resist	

Mixed - A portion of the samples tested failed in the 2000 hour of test. This is an indication of a high level of resistance.

Pitting Resistance

The chromium and molybdenum content of Alloy 825 provides a high level of resistance to chloride pitting. For this reason the alloy can be utilized in high chloride environments such as seawater. It can be used primarily in applications where some pitting can be tolerated. It is superior to conventional stainless steels such as 316L, however, in seawater applications Alloy 825 does not provide the same levels of resistance as SSC-6MO (UNS N08367) or Alloy 625 (UNS N06625).

Crevice Corrosion Resistance

Resistance to Chloride Pitting and Crevice Corrosion

Alloy	Temp. of Onset of Crevice Corrosion Attack* °F (°C)
316	27 (-2.5)
825	32 (0.0)
SSC-6MO	113 (45.0)
625	113 (45.0)

*ASTM Procedure G-48, 10% Ferric Chloride

Intergranular Corrosion Resistance

Resistance to

Intergranular Corrosion

Alloy	Boiling 65% Nitric Acid ASTM Procedure A 262 Practice C
316	34 (.85)
316L	18 (.47)
825	12 (.30)
SSC-6MO	30 (.76)
625	37 (.94)
Alloy	Boiling 50% Sulfuric Acid-Ferric Sulfate ASTM Procedure A 262 Practice B
316	36 (.91)
316L	26 (.66)
825	1 (.03)
SSC-6MO	19 (.48)
625	Not Tested

NOTE

This technical data and information represents our best knowledge at the time of printing. However, it may be subject to some slight variations due to our ongoing research program on corrosion resistant grades.

We, therefore, suggest that information be verified at time of inquiry or order. Furthermore, in service, real conditions are specific for each application. The data presented here is only for the purpose of description and may only be considered as guarantees when our Company has given written formal approval.

