Sandmeyer Steel Covid-19 Alert
70th REQUEST A QUOTE CONTACT US LATEST NEWS
 

Stainless Steel Plate

Sandmeyer Steel Company has the heaviest and largest inventory of Alloy 317L stainless steel plate in thicknesses from 3/16" through 4".

Available thicknesses for 317L / 317:

3/16" 1/4" 5/16" 3/8" 1/2" 5/8" 3/4" 7/8" 1" 1 1/8"
4.8mm 6.3mm 7.9mm 9.5mm 12.7mm 15.9mm 19mm 22.2mm 25.4mm 28.6mm
 
1 1/4" 1 1/2" 1 3/4" 2" 2 1/4" 2 1/2" 2 3/4" 3" 3 1/2" 4"
31.8mm 38.1mm 44.5mm 50.8mm 57.2mm 63.5mm 69.9mm 76.2mm 88.9mm 101.6mm

Alloy 317L (UNS S31703) is a molybdenum-bearing austenitic stainless steel with greatly increased resistance to chemical attack as compared to the conventional chromium-nickel austenitic stainless steels such as Alloy 304. In addition, Alloy 317L offers higher creep, stress-to-rupture, and tensile strength at elevated temperatures than conventional stainless steels. It is a low carbon or "L" grade which provides resistance to sensitization during welding and other thermal processes.

General Properties

Alloy 317L (UNS S31703) is a lowcarbon corrosion resistant austenitic chromium-nickel-molybdenum stainless steel. The high levels of these elements assure the alloy has superior chloride pitting and general corrosion resistance to the conventional 304/304L and 316/316L grades. The alloy provides improved resistance relative to 316L in strongly corrosive environments containing sulfurous media, chlorides, and other halides.

The low carbon content of Alloy 317L enables it to be welded without intergranular corrosion resulting from chromium carbide precipitation enabling it to be used in the as-welded condition. With the addition of nitrogen as a strengthening agent, the alloy can be dual certified as Alloy 317 (UNS S31700).

Alloy 317L is non-magnetic in the annealed condition. It cannot be hardened by heat treatment, however the material will harden due to cold working. Alloy 317L can be easily welded and processed by standard shop fabrication practices.


Applications

  • Air Pollution Control — flue gas desulfurization systems (FGD)
  • Chemical and Petrochemical Processing
  • Explosives
  • Food and Beverage Processing
  • Petroleum Refining
  • Power Generation — condensers
  • Pulp and Paper

Standards

ASTM........A 240
ASME........SA 240

Corrosion Resistance

The higher molybdenum content of Alloy 317L assures superior general and localized corrosion resistance in most media when compared with 304/304L and 316/316L stainless steels. Environments that don't attack 304/304L stainless steel will normally not corrode 317L. One exception, however, are strongly oxidizing acids such as nitric acid. Alloys that contain molybdenum generally do not perform as well in these environments.

Alloy 317L has excellent corrosion resistance to a wide range of chemicals. It resists attack in sulfuric acid, acidic chlorine and phosphoric acid. It is used in handling hot organic and fatty acids often present in food and pharmaceutical processing applications.

The corrosion resistance of 317 and 317L should be the same in any given environment. The one exception is where the alloy will be exposed to temperatures in the chromium carbide precipitation range of 800 – 1500°F (427 – 816°C). Because of its low carbon content, 317L is the preferred material in this service to guard against intergranular corrosion.

In general, austenitic stainless steels are subject to chloride stress corrosion cracking in halide service. Although 317L is somewhat more resistant to stress corrosion cracking than 304/304L stainless steels, because of its higher molybdenum content, it is still susceptible.

The higher chromium, molybdenum and nitrogen content of 317L enhance its ability to resist pitting and crevice corrosion in the presence of chlorides and other halides. The Pitting Resistance Equivalent including Nitrogen number (PREN) is a relative measure of pitting resistance. The following chart offers a comparison Alloy 317L and other austenitic stainless steels.

ALLOY Composition (Weight Percent) PREN1
Cr Mo N
304 Stainless Steel 18.0 0.06 19.0
316 Stainless Steel 16.5 2.1 0.05 24.2
317L Stainless Steel 18.5 3.1 0.06 29.7
SSC-6MO 20.5 6.2 0.22 44.5

1Pitting Resistance Equivelant, including Nitrogen, PREN = Cr + 3.3Mo + 16N

Chemical Analysis

Weight % (all values are maximum unless a range is otherwise indicated)

Chromium 18.0 min.-20.0 max. Phosphorus 0.045
Nickel 11.0 min.-15.0 max. Sulfur 0.030
Molybdenum 3.0 min. - 4.0 max. Silicon 0.75
Carbon 0.030 Nitrogen 0.10
Manganese 2.00 Iron Balance

Physical Properties

Density

0.285 lbs/in3
7.89 g/cm3

Specific Heat

0.12 BTU/lb-°F (32 – 212°F)
502 J/kg-°K (0 – 100°C)

Modulus of Elasticity

29.0 x 106 psi
200 GPa

 

Thermal Conductivity 68°F (20°C)

8.1 BTU/(hr x ft x °F)
14 W/(m x K)

Melting Range

2540 – 2630°F
1390 – 1440°C

Electrical Resistivity

33.5 Microhm-in at 68°C
85.1 Microhm-cm at 20°C
Mean Coefficient of Thermal Expansion
Temperature Range  
°F °C in/in °F cm/cm °C
68-212 20-100 8.9 x 10-6 16.2 x 10-6

Mechanical Properties

Values at 68°F (20°C) (minimum values, unless specified)

Yield Strength
0.2% Offset
Ultimate Tensile
Strength
Elongation
in 2 in.
Hardness
psi (min.) (MPa) psi (min.) (MPa) % (min.) (max.)
30,000 205 75,000 515 40 95 Rockwell B

Fabrication Data

Alloy 317L can be easily welded and processed by standard shop fabrication practices.

Cold Forming

The alloy is quite ductile and forms easily. The addition of molybdenum and nitrogen implies more powerful processing equipment may be necessary when compared with the standard 304/304L grades.

Hot Forming

Working temperatures of 1652 – 2102°F (900 – 1150°C) are recommended for hot working processes. Do not work this alloy below 1742°F (950°C). If the final forming temperature falls below this threshold, a solution anneal of 1976 – 2156°F (1080 – 1180°C) is necessary. Rapid quenching is required.

Machining

The cold work hardening rate of Alloy 317L makes it less machinable than 410 stainless steel. The table below provides relevant machining data.

Operation Tool Lubrication CONDITIONS
      Depth-mm Depth-in Feed-mm/t Feed-in/t Speed-m/min Speed-ft/min
Turning High Speed Steel Cutting Oil 6 .23 0.5 .019 11-16 36-52
Turning High Speed Steel Cutting Oil 3 .11 0.4 .016 18-23 59-75
Turning High Speed Steel Cutting Oil 1 .04 0.2 .008 25-30 82-98
Turning Carbide Dry or Cutting Oil 6 .23 0.5 .019 70-80 230-262
Turning Carbide Dry or Cutting Oil 3 .11 0.4 .016 85-95 279-313
Turning Carbide Dry or Cutting Oil 1 .04 0.2 .008 100-110 328-361
      Depth of cut-mm Depth of cut-in Feed-mm/t Feed-in/t Speed-m/min Speed-ft/min
Cutting High Speed Steel Cutting Oil 1.5 .06 0.03-0.05 .0012-.0020 16-21 52-69
Cutting High Speed Steel Cutting Oil 3 .11 0.04-0.06 .0016-.0024 17-22 56-72
Cutting High Speed Steel Cutting Oil 6 .23 0.05-0.07 .0020-.0027 18-23 59-75
      Drill ø mm Drill ø in Feed-mm/t Feed-in/t Speed-m/min Speed-ft/min
Drilling High Speed Steel Cutting Oil 1.5 .06 0.02-0.03 .0007-.0012 10-14 33-46
Drilling High Speed Steel Cutting Oil 3 .11 0.05-0.06 .0020-.0024 12-16 39-52
Drilling High Speed Steel Cutting Oil 6 .23 0.08-0.09 .0031-.0035 12-16 39-52
Drilling High Speed Steel Cutting Oil 12 .48 0.09-0.10 .0035-.0039 12-16 39-52
          Feed-mm/t Feed-in/t Speed-m/min Speed-ft/min
Milling Profiling High Speed Steel Cutting Oil     0.05-0.10 .002-.004 10-20 33-66

Welding

Alloy 317L can be readily welded by most standard processes. A post weld heat treatment is not necessary

NOTE: The information and data in this product data sheet are accurate to the best of our knowledge and belief, but are intended for informational purposes only, and may be revised at any time without notice. Applications suggested for the materials are described only to help readers make their own evaluations and decisions, and are neither guarantees nor to be construed as express or implied warranties of suitability for these or other applications.